Mathematics Formula Sheet for CUET UG 2025
Mathematics Formula Sheet for CUET UG 2025
📋 Comprehensive Collection of Essential Mathematics Formulas
This formula sheet covers all essential topics for CUET UG Mathematics. Keep this handy for quick revision and last-minute preparation.
🔢 Algebra
Quadratic Equations
- Standard Form: ax² + bx + c = 0
- Root Formula: x = [-b ± √(b² - 4ac)] / 2a
- Discriminant: Δ = b² - 4ac
- Sum of Roots: α + β = -b/a
- Product of Roots: αβ = c/a
Progressions
Arithmetic Progression (AP)
- nth Term: aₙ = a + (n-1)d
- Sum of n terms: Sₙ = n/2[2a + (n-1)d]
- Sum of n terms (alternative): Sₙ = n/2(a + l) where l is last term
Geometric Progression (GP)
- nth Term: aₙ = ar^(n-1)
- Sum of n terms: Sₙ = a(rⁿ - 1)/(r - 1), r ≠ 1
- Sum to infinity: S∞ = a/(1 - r), |r| < 1
Harmonic Progression (HP)
- Reciprocal of AP: If a, b, c are in AP, then 1/a, 1/b, 1/c are in HP
- nth Term: Hₙ = 1/Aₙ where Aₙ is nth term of corresponding AP
Binomial Theorem
- (a + b)ⁿ = Σ(nCr) a^(n-r) b^r, where r = 0 to n
- General Term: T_(r+1) = nCr a^(n-r) b^r
- Middle Term:
- If n is even: (n/2 + 1)th term
- If n is odd: (n+1)/2th and (n+3)/2th terms
Permutations and Combinations
- Permutation: nPr = n!/(n-r)!
- Combination: nCr = n!/[r!(n-r)!]
- Fundamental Principle:
- Addition: m + n ways
- Multiplication: m × n ways
Matrices and Determinants
- Matrix Addition: A + B = [a_ij + b_ij]
- Matrix Multiplication: AB = C where c_ij = Σ(a_ik × b_kj)
- 2×2 Determinant: |a b; c d| = ad - bc
- 3×3 Determinant: |a b c; d e f; g h i| = a(ei - fh) - b(di - fg) + c(dh - eg)
📐 Trigonometry
Basic Trigonometric Ratios
- sin θ = Opposite/Hypotenuse
- cos θ = Adjacent/Hypotenuse
- tan θ = Opposite/Adjacent = sin θ/cos θ
- cot θ = Adjacent/Opposite = cos θ/sin θ
- sec θ = Hypotenuse/Adjacent = 1/cos θ
- cosec θ = Hypotenuse/Opposite = 1/sin θ
Trigonometric Identities
- sin²θ + cos²θ = 1
- sec²θ - tan²θ = 1
- cosec²θ - cot²θ = 1
- 1 + tan²θ = sec²θ
- 1 + cot²θ = cosec²θ
Angle Addition Formulas
- sin(A ± B) = sin A cos B ± cos A sin B
- cos(A ± B) = cos A cos B ∓ sin A sin B
- tan(A ± B) = (tan A ± tan B)/(1 ∓ tan A tan B)
Double Angle Formulas
- sin 2A = 2 sin A cos A
- cos 2A = cos²A - sin²A = 1 - 2 sin²A = 2 cos²A - 1
- tan 2A = 2 tan A/(1 - tan²A)
Triple Angle Formulas
- sin 3A = 3 sin A - 4 sin³A
- cos 3A = 4 cos³A - 3 cos A
- tan 3A = (3 tan A - tan³A)/(1 - 3 tan²A)
Sum to Product Formulas
- sin A + sin B = 2 sin((A+B)/2) cos((A-B)/2)
- sin A - sin B = 2 cos((A+B)/2) sin((A-B)/2)
- cos A + cos B = 2 cos((A+B)/2) cos((A-B)/2)
- cos A - cos B = -2 sin((A+B)/2) sin((A-B)/2)
📏 Coordinate Geometry
Distance and Section Formula
- Distance between points: d = √[(x₂-x₁)² + (y₂-y₁)²]
- Section Formula (Internal): [(mx₂ + nx₁)/(m+n), (my₂ + ny₁)/(m+n)]
- Section Formula (External): [(mx₂ - nx₁)/(m-n), (my₂ - ny₁)/(m-n)]
Straight Lines
- Slope: m = (y₂-y₁)/(x₂-x₁)
- Equation forms:
- Slope-intercept: y = mx + c
- Point-slope: y - y₁ = m(x - x₁)
- Two-point: (y-y₁)/(y₂-y₁) = (x-x₁)/(x₂-x₁)
- General: ax + by + c = 0
- Angle between lines: tan θ = |(m₂-m₁)/(1+m₁m₂)|
- Parallel lines: m₁ = m₂
- Perpendicular lines: m₁m₂ = -1
Circles
- Standard Form: (x-a)² + (y-b)² = r²
- General Form: x² + y² + 2gx + 2fy + c = 0
- Center: (-g, -f)
- Radius: √(g² + f² - c)
- Circle through origin: x² + y² + 2gx + 2fy = 0
Parabola
- Standard Form: y² = 4ax (rightward), x² = 4ay (upward)
- Focus: (a, 0) for y² = 4ax, (0, a) for x² = 4ay
- Directrix: x = -a for y² = 4ax, y = -a for x² = 4ay
- Latus Rectum: 4a
Ellipse
- Standard Form: x²/a² + y²/b² = 1 (a > b)
- Major axis: 2a, Minor axis: 2b
- Foci: (±c, 0) where c² = a² - b²
- Eccentricity: e = c/a
- Directrices: x = ±a/e
Hyperbola
- Standard Form: x²/a² - y²/b² = 1
- Transverse axis: 2a, Conjugate axis: 2b
- Foci: (±c, 0) where c² = a² + b²
- Eccentricity: e = c/a
- Asymptotes: y = ±(b/a)x
📈 Calculus
Limits
- Basic Limits:
- lim(x→0) sin x/x = 1
- lim(x→0) (1 - cos x)/x = 0
- lim(x→0) (a^x - 1)/x = ln a
- lim(x→∞) (1 + 1/x)^x = e
Differentiation Formulas
- Power Rule: d/dx(x^n) = nx^(n-1)
- Product Rule: d/dx(uv) = u(dv/dx) + v(du/dx)
- Quotient Rule: d/dx(u/v) = [v(du/dx) - u(dv/dx)]/v²
- Chain Rule: d/dx[f(g(x))] = f’(g(x)) × g’(x)
Derivatives of Functions
- d/dx(sin x) = cos x
- d/dx(cos x) = -sin x
- d/dx(tan x) = sec²x
- d/dx(cot x) = -cosec²x
- d/dx(sec x) = sec x tan x
- d/dx(cosec x) = -cosec x cot x
- d/dx(e^x) = e^x
- d/dx(a^x) = a^x ln a
- d/dx(ln x) = 1/x
- d/dx(log_a x) = 1/(x ln a)
Integration Formulas
-
Basic Integrals:
- ∫x^n dx = x^(n+1)/(n+1) + C, n ≠ -1
- ∫1/x dx = ln|x| + C
- ∫e^x dx = e^x + C
- ∫a^x dx = a^x/ln a + C
-
Trigonometric Integrals:
- ∫sin x dx = -cos x + C
- ∫cos x dx = sin x + C
- ∫sec²x dx = tan x + C
- ∫cosec²x dx = -cot x + C
- ∫sec x tan x dx = sec x + C
- ∫cosec x cot x dx = -cosec x + C
Integration by Parts
- Formula: ∫u dv = uv - ∫v du
Definite Integrals
- Fundamental Theorem: ∫(a to b) f(x) dx = F(b) - F(a)
- Properties:
- ∫(a to b) f(x) dx = -∫(b to a) f(x) dx
- ∫(a to b) f(x) dx = ∫(a to c) f(x) dx + ∫(c to b) f(x) dx
- ∫(a to b) f(x) dx = ∫(a to b) f(a + b - x) dx
📊 Probability and Statistics
Probability
- Basic Probability: P(A) = n(A)/n(S)
- Addition Rule: P(A ∪ B) = P(A) + P(B) - P(A ∩ B)
- Multiplication Rule: P(A ∩ B) = P(A) × P(B|A)
- Conditional Probability: P(A|B) = P(A ∩ B)/P(B)
Permutations and Combinations
- nPn = n!
- nCr = nPr/r!
- nC0 = nCn = 1
- nC1 = nC(n-1) = n
Statistics
-
Mean: x̄ = (Σx)/n
-
Median: Middle value when arranged in order
-
Mode: Most frequently occurring value
-
Range: Maximum - Minimum
-
Variance: σ² = Σ(x - x̄)²/n
-
Standard Deviation: σ = √(Σ(x - x̄)²/n)
-
Coefficient of Variation: CV = (σ/x̄) × 100%
Correlation
- Correlation Coefficient: r = Σ[(x - x̄)(y - ȳ)]/[√Σ(x - x̄)² × √Σ(y - ȳ)²]
🎯 Vectors
Vector Operations
- Magnitude: |r| = √(x² + y² + z²)
- Unit Vector: r̂ = r/|r|
- Dot Product: a · b = |a||b|cos θ
- Cross Product: a × b = |a||b|sin θ n̂
Vector in 3D
- Position Vector: r = xî + yĵ + zk̂
- Direction Cosines: l² + m² + n² = 1
- Section Formula: r = (mr₂ + nr₁)/(m + n)
🔵 Sets and Relations
Set Operations
- Union: A ∪ B = {x | x ∈ A or x ∈ B}
- Intersection: A ∩ B = {x | x ∈ A and x ∈ B}
- Complement: A’ = {x | x ∉ A}
- Difference: A - B = {x | x ∈ A and x ∉ B}
De Morgan’s Laws
- (A ∪ B)’ = A’ ∩ B’
- (A ∩ B)’ = A’ ∪ B’
📐 Geometry
Triangle Formulas
- Area: ½ × base × height
- Heron’s Formula: A = √[s(s-a)(s-b)(s-c)], where s = (a+b+c)/2
- Sine Rule: a/sin A = b/sin B = c/sin C = 2R
- Cosine Rule: a² = b² + c² - 2bc cos A
Circle Formulas
- Circumference: 2πr
- Area: πr²
- Arc Length: l = θr (θ in radians)
- Sector Area: A = ½r²θ
3D Geometry
- Cube: Surface Area = 6a², Volume = a³
- Cuboid: Surface Area = 2(lw + wh + hl), Volume = lwh
- Sphere: Surface Area = 4πr², Volume = (4/3)πr³
- Cylinder: Surface Area = 2πr(r + h), Volume = πr²h
- Cone: Surface Area = πr(r + l), Volume = (1/3)πr²h
🎲 Logarithms
Logarithmic Rules
- log₁ₐa = 1
- log₁ₐ1 = 0
- log₁ₐ(ab) = log₁ₐa + log₁ₐb
- log₁ₐ(a/b) = log₁ₐa - log₁ₐb
- log₁ₐa^n = n log₁ₐa
- Change of Base: log₁ₐb = log₁ₓb/log₁ₓa**
🔢 Complex Numbers
Complex Number Operations
- Basic Form: z = a + ib
- Modulus: |z| = √(a² + b²)
- Argument: θ = tan⁻¹(b/a)
- Polar Form: z = r(cos θ + i sin θ)
- Euler’s Form: z = re^(iθ)
De Moivre’s Theorem
- (cos θ + i sin θ)^n = cos nθ + i sin nθ
📚 Quick Reference Tables
Common Values
Angle | sin | cos | tan |
---|---|---|---|
0° | 0 | 1 | 0 |
30° | 1/2 | √3/2 | 1/√3 |
45° | 1/√2 | 1/√2 | 1 |
60° | √3/2 | 1/2 | √3 |
90° | 1 | 0 | ∞ |
Squares and Cubes
Number | Square | Cube |
---|---|---|
1 | 1 | 1 |
2 | 4 | 8 |
3 | 9 | 27 |
4 | 16 | 64 |
5 | 25 | 125 |
6 | 36 | 216 |
7 | 49 | 343 |
8 | 64 | 512 |
9 | 81 | 729 |
10 | 100 | 1000 |
Logarithm Values
Number | log | ln |
---|---|---|
1 | 0 | 0 |
2 | 0.301 | 0.693 |
3 | 0.477 | 1.099 |
5 | 0.699 | 1.609 |
7 | 0.845 | 1.946 |
10 | 1 | 2.303 |
🎯 Exam Tips
Quick Revision Strategy
- Memorize basic formulas - These are frequently used
- Practice application - Understand when to use each formula
- Create formula cards - For quick reference
- Solve previous year questions - To see patterns
- Time management - Quick access saves time
Common Mistakes to Avoid
- Sign errors in trigonometric functions
- Domain restrictions in logarithmic functions
- Absolute value in integration results
- Plus C in indefinite integrals
- Units in application problems
🔗 Additional Resources
Practice Materials
Study Support
📌 Remember: Practice regularly with these formulas to build speed and accuracy in CUET UG Mathematics!
Last Updated: October 2024 | CUET UG 2025 Mathematics Formula Sheet