Simple Harmonic Motion

https: Hub

General Learning Resources

65%
Complete
12
Guides
8
Tests
5
Resources
7
Day Streak
Your Learning Path Active
2
3
🎯
Learn Practice Test Master

S.H.M.:

$\mathrm{F}=-\mathrm{kx}$

General equation of S.H.M. is $x=A \sin (\omega t+\phi)$

$(\omega t+\phi)$ is phase of the motion and $\phi$ is initial phase of the motion.

Angular Frequency$(\omega)$ :

$\omega=\frac{2 \pi}{T}=2 \pi f$

Time period $(\mathrm{T}) :$

$\mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}}}$

alt text

Speed :

$v=\omega \sqrt{A^{2}-x^{2}} $

Acceleration :

$ a=-\omega^{2} x$

Kinetic Energy (KE):

$\text{KE} = \frac{1}{2} m v^{2}=\frac{1}{2} m \omega^{2}\left(A^{2}-x^{2}\right)=\frac{1}{2} k\left(A^{2}-x^{2}\right)$

Potential Energy (PE) :

$\text{PE} =\frac{1}{2} \mathrm{Kx}{ }^{2}$

Total Mechanical Energy (TME):

$ \text{TE} =K . E .+P . E .=\frac{1}{2} k\left(A^{2}-x^{2}\right)+\frac{1}{2} K x^{2}=\frac{1}{2} K A^{2} \text{(which is constant)}$

Spring-Mass System

(1)

$\Rightarrow \quad T=2 \pi \sqrt{\frac{m}{k}}$

(2)

$T=2 \pi \sqrt{\frac{\mu}{K}}$

where: $\mu=\frac{m_1 m_2}{\left(m_1+m_2\right)}$ known as reduced mass

Combination Of Springs:

  • Series Combination : $1 / k_{eq}=1 / k_{1}+1 / k_{2}$

  • Parallel combination : $ k_{eq}=k_1+k_2$

Simple Pendulum:

In accelerating Reference Frame: $T=2 \pi \sqrt{\frac{\ell}{g}}=2 \pi \sqrt{\frac{\ell}{g_{\text {eff. }}}}$

$g_{\text {eff }}$ is net acceleration due to pseudo force and gravitational force.

Compound Pendulum / Physical Pendulum:

Time period (T):

$T=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mg} \ell}}$

where, $\mathrm{I}=\mathrm{I}_{\mathrm{CM}}+\mathrm{m} \ell^{2} ; \ell$ is distance between point of suspension and centre of mass.

Torsional Pendulum

Time period $(T): \quad T=2 \pi \sqrt{\frac{I}{C}}$

where, $C=$ Torsional constant

Superposition of SHM:

Superposition of SHM’s along the same direction

$x_{1}=A_{1} \sin \omega t$

$x_{2}=A_{2} \sin (\omega t+\theta)$

If equation of resultant SHM is taken as: $\mathrm{x}=\mathrm{A} \sin (\omega \mathrm{t}+\phi)$

$A=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \theta}$

$ \tan \phi=\frac{A_{2} \sin \theta}{A_{1}+A_{2} \cos \theta}$

Damped Oscillation

- Damping force

$\vec{\mathrm{F}}=-\mathrm{b} \vec{\mathrm{v}}$

- equation of motion is

$\frac{\mathrm{mdv}}{\mathrm{dt}}=-\mathrm{kx}-\mathrm{bv}$

  • Over Damping: $b^{2}-4 m K>0$
  • Critical Damping: $b^{2}-4 m K=0$
  • Under Damping: $b^{2}-4 m K<0$
  • For small damping the solution is of the form.

$x=\left(A_{0} e^{-b t / 2 m}\right) \sin \left[\omega^{1} t+\delta\right]$

Where $\omega^{\prime}=\sqrt{\left(\frac{k}{m}\right)-\left(\frac{b}{2 m}\right)^{2}}$

For small b

  • Angular Frequency: $\omega^{\prime} \approx \sqrt{\mathrm{k} / \mathrm{m}},=\omega_{0}$

  • Amplitude: $A=A_{0} e^{\frac{-b t}{2 m}}$

  • Energy: $E(t)=\frac{1}{2} K A^{2} e^{-b t / m}$

  • Quality factor or $Q$ value, $Q=2 \pi \frac{E}{|\Delta E|}=\frac{\omega^{\prime}}{2 \omega_{Y}}$

where $, \omega^{\prime}=\sqrt{\frac{k}{m} \cdot \frac{b^{2}}{4 m^{2}}} \quad, \omega_{Y}=\frac{b}{2 m}$

Forced Oscillations And Resonance

External Force $F(t)=F_{0} \cos \omega_{d} t$

$x(t)=A \cos \left(\omega_{d} t+\phi\right)$

$A=\frac{F_{0}}{\sqrt{\left(m^{2}\left(\omega^{2}-\omega_{d}^{2}\right)^{2}+\omega_{d}^{2} b^{2}\right)}}$

$\tan \phi=\frac{-v_{0}}{\omega_{d} x_{0}}$

(a) Small Damping: $A=\frac{F_{0}}{m\left(\omega^{2}-\omega_{d}^{2}\right)}$

(b) Driving Frequency Close to Natural Frequency: $A=\frac{F_{0}}{\omega_{d} b}$