Rigid Body Dynamics
https: Hub
General Learning Resources
Rigid Body :
If the above body is rigid
$ V_A \cos \theta_1=V_B \cos \theta_2 $
$V_{B A}=$ relative velocity of point $B$ with respect to point $A$.
Moment Of Inertia(I) :
-
Definition : Moment of Inertia is defined as the capability of system to oppose the change produced in the rotational motion of a body.
-
Moment of Inertia is a scalar positive quantity.
$I =mr_{1}^{2}+m_{2}r_{2}^{2}+\ldots$
$I=I_1+I_2+I_3+\ldots$
- SI units of Moment of Inertia is $\mathrm{Kgm}^{2}$.
Moment Of Inertia Of Different Object:
-
A single particle : $\mathrm{I}=\mathrm{mr}^{2}$
where: $m=$ mass of the particle
$r=$ perpendicular distance of the particle from the axis about which moment of Inertia is to be calculated
-
For many particles (system of particles) :
$I=\sum_{i=1}^{n} m_{i} r_{i}^{2}$
-
For a continuous object :
$\mathrm{I}=\int \mathrm{dmr} \mathrm{r}^{2}$
where $\mathrm{dm}=$ mass of a small element
$r=$ perpendicular distance of the particle from the axis
-
For a larger object :
$\mathrm{I}=\int \mathrm{dI}_{\text {element }}$
where: $\mathrm{dI}=$ moment of inertia of a small element
Two Important Theorems On Moment Of Inertia :
-
Perpendicular Axis Theorem
[Only applicable to plane lamina (that means for 2-D objects only)].
When object is in $x-y$ plane: $I_{z}=I_{x}+I_{y}$
-
Parallel Axis Theorem
(Applicable to any type of object):
$I_{AB}=I_{cm}+Md^{2}$
List of some useful formula :
Radius Of Gyration :
$\mathrm{I}=\mathrm{MK}^{2}$
Torque:
$\vec{\tau}=\vec{r} \times \vec{F}$
Relation between ’ $\tau$ ’ and ’ $\alpha$ ’ (for hinged object or pure rotation)
$ \vec{\tau} _{ext/Hinge } = I _{Hinge} \vec{\alpha}$
Where: $\vec{\tau} _{ext/Hinge }$= net external torque acting on the body about Hinge point
$\mathrm{I} _{\text {Hinge }}=$ moment of Inertia of body about Hinge point
$F_{1t}=M_{1} a_{1t}=M_1 r_1 \alpha$
$F_{2 t}=M_{2} a_{2 t}=M_{2} r_{2} \alpha$
$\tau_{resultant}=F_{1t} r_{1}+F_{2t} r_{2}+\ldots$
$=M_{1} \alpha r_{1}^{2}+M_{2} \alpha r_{2}^{2}+$
$\tau_{\text {resultant/ external}}=\mathrm{I} \alpha$
Rotational Kinetic Energy
$ \text{K.E}=\frac{1}{2} I \omega^{2}$
$\vec{P}=M\vec{v} _{CM} \Rightarrow \vec{F} _{external} = M \vec{a} _{CM} $
Net external force acting on the body has two parts tangential and centripetal.
$ \Rightarrow F _C = ma _C = m \frac{v^2}{r _{CM}}=m \omega^{2} r _{cm} $
$ \Rightarrow F _t = ma _t = m\alpha r _{CM}$
Rotational Equilibrium :
For translational equilibrium:
$\Sigma F_{x}=0 \hspace{10mm}…(i)$
$\Sigma \mathrm{F}_{\mathrm{y}}=0 \hspace{10mm}…(ii)$
The condition of rotational equilibrium is:
$\Sigma \Gamma_{z}=0$
Angular Momentum $(\vec{L})$:
- Angular Momentum Of A Particle About A Point:
blic)
$\vec{L} =\vec{r} \times \vec{P} \quad \Rightarrow \quad L=rp \sin \theta$
$|\vec{L}| =r_{\perp} \times P $
$|\vec{L}| =P_{\perp} \times r$
- Angular Momentum Of A Rigid Body Rotating About Fixed Axis :
$\vec{L} _{H} = I _{H} \vec{\omega}$
-
$\mathrm{L}_{\mathrm{H}}=$ angular momentum of object about axis $\mathrm{H}$.
-
$\mathrm{I}_{\mathrm{H}}=$ Moment of Inertia of rigid object about axis $\mathrm{H}$.
-
$\omega=$ angular velocity of the object.
-
Conservation of Angular Momentum:
Angular momentum of a particle or a system remains constant if $\tau_{\mathrm{ext}}=0$ about that point or axis of rotation.
-
Relation between Torque and Angular Momentum
$\vec{\tau}=\frac{\mathrm{d} \vec{\mathrm{L}}}{\mathrm{dt}}$
Torque is change in angular momentum.
-
Impulse of Torque :
$\int \tau dt=\Delta J$
Where: $\Delta J$ is Change in angular momentum.
For a rigid body, the distance between the particles remain unchanged during its motion i.e. $\mathrm{r}_{\mathrm{P} / \mathrm{Q}}=$ constant
-
For velocities:
$V_P=\sqrt{V_Q^{2}+(\omega r)^{2}+2 V_Q \omega r \cos \theta}$
- For acceleration :
$\theta, \omega, \alpha$ are same about every point of the body (or any other point outside which is rigidly attached to the body).
Dynamics :
$\vec{\tau} _{cm}=I _{cm} \vec{\alpha},$
$\vec F _{ext} = M \vec{a} _{cm}$
$\vec{P} _{system}=M \vec{v} _{cm}$
$\text{Total K.E.}=\frac{1}{2} M _{\mathrm{cm}^{2}}+\frac{1}{2} \mathrm{I} _{\mathrm{cm}} \omega^{2}$
Angular momentum axis: $A B=\vec{L} _{\text{about C.M.}} + \vec{L} _{\text {of C.M. about A B}}$
$\vec{L} _{AB}= I _{cm}\vec{\omega}+\vec{r _{cm}}\times M\vec{v} _{cm}$
Simple Harmonic Motion
S.H.M.
$\mathrm{F}=-\mathrm{kx}$
General equation of S.H.M. is $x=A \sin (\omega t+\phi) ;(\omega t+\phi)$ is phase of the motion and $\phi$ is initial phase of the motion.
- Angular Frequency $(\omega)$ :
$\omega=\frac{2 \pi}{T}=2 \pi f$
- Time period $(\mathrm{T})$:
$\mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}}}$

-
Speed :$v=\omega \sqrt{A^{2}-x^{2}} $
-
Acceleration : $ a=-\omega^{2} x$
-
Kinetic Energy (KE): $\text{K.E}= \frac{1}{2} m v^{2}=\frac{1}{2} m \omega^{2}\left(A^{2}-x^{2}\right)=\frac{1}{2} k\left(A^{2}-x^{2}\right)$
-
Potential Energy (PE) : $\text{ P.E}= \frac{1}{2} \mathrm{Kx}{ }^{2}$
-
Total Mechanical Energy (TME)
$\text{T.E = K.E. + P.E.}=\frac{1}{2} k\left(A^{2}-x^{2}\right)+\frac{1}{2} K x^{2}=\frac{1}{2} K A^{2} = \text{constant}$
Spring-Mass System
(1)
$\Rightarrow T=2 \pi \sqrt{\frac{m}{k}}$
(2)
$T=2 \pi \sqrt{\frac{\mu}{K}}$
where: $\mu=\frac{m_1 m_2}{\left(m_1+m_2\right)}$ is known as reduced mass
Combination Of Springs
-
Series Combination : $1 / k_{eq}=1 / k_{1}+1 / k_{2}$
-
Parallel combination : $k_{eq}=k_1+k_2$
Simple Pendulum:
$T=2 \pi \sqrt{\frac{\ell}{g}}=2 \pi \sqrt{\frac{\ell}{g_{\text {eff. }}}}$
In accelerating Reference Frame $g_{\text {eff }}$ is net acceleration due to pseudo force and gravitational force.
Compound Pendulum / Physical Pendulum:
$T=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mg} \ell}}$
where, $\mathrm{I}=\mathrm{I}_{\mathrm{CM}}+\mathrm{m} \ell^{2} ; \ell$ is distance between point of suspension and centre of mass.
Torsional Pendulum:
$T=2 \pi \sqrt{\frac{I}{C}} \quad$
where, $C=$ Torsional constant
Superposition of SHM’s along the same direction
$x_{1}=A_{1} \sin \omega t$
$x_{2}=A_{2} \sin (\omega t+\theta)$

If equation of resultant $\mathrm{SHM}$ is taken as $\mathrm{x}=\mathrm{A} \sin (\omega \mathrm{t}+\phi)$
$A=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \theta}$
$\tan \phi=\frac{A_{2} \sin \theta}{A_{1}+A_{2} \cos \theta}$
Damped Oscillation
- Damping force
$\vec{\mathrm{F}}=-\mathrm{b} \vec{\mathrm{v}}$
- Equation of motion
$\frac{\mathrm{mdv}}{\mathrm{dt}}=-\mathrm{kx}-\mathrm{bv}$
where:
-
$b^{2}-4 m K>0$ over damping
-
$b^{2}-4 m K=0$ critical damping
-
$b^{2}-4 m K<0$ under damping
-
For small damping the solution is of the form.
$x=\left(A_{0} e^{-b t / 2 m}\right) \sin \left[\omega^{\prime} t+\delta\right]$
where $\omega^{\prime}=\sqrt{\left(\frac{k}{m}\right)-\left(\frac{b}{2 m}\right)^{2}}$
For small b
-
Angular Frequency: $\omega^{\prime} \approx \sqrt{\mathrm{k} / \mathrm{m}},=\omega_{0}$
-
Amplitude: $A=A_{0} e^{\frac{-b t}{2 m}}$
-
Energy $E(t)=\frac{1}{2} K A^{2} e^{-b t / m}$
-
Quality factor or $Q$ value: $Q=2 \pi \frac{E}{|\Delta E|}=\frac{\omega^{\prime}}{2 \omega_{Y}}$
where $, \omega^{\prime}=\sqrt{\frac{k}{m} \cdot \frac{b^{2}}{4 m^{2}}} \quad, \omega_{Y}=\frac{b}{2 m}$
Forced Oscillations And Resonance
External Force $F(t)=F_{0} \cos \omega_{d} t$
$x(t)=A \cos \left(\omega_{d} t+\phi\right)$
$A=\frac{F_{0}}{\sqrt{\left(m^{2}\left(\omega^{2}-\omega_{d}^{2}\right)^{2}+\omega_{d}^{2} b^{2}\right)}}$
$\tan \phi=\frac{-v_{0}}{\omega_{d} x_{0}}$
(a) Small Damping $A=\frac{F_{0}}{m\left(\omega^{2}-\omega_{d}^{2}\right)}$
(b) Driving Frequency Close to Natural Frequency $A=\frac{F_{0}}{\omega_{d} b}$