Rectilinear Motion

https: Hub

General Learning Resources

65%
Complete
12
Guides
8
Tests
5
Resources
7
Day Streak
Your Learning Path Active
2
3
🎯
Learn Practice Test Master
Average Velocity (in an interval) :

$ v_{av} = \overline{v} = \langle v \rangle = \frac{ \text{Total displacement}}{\text{ Total time taken}} = \frac{\vec{\mathrm{x_f}} - \vec{\mathrm{x_i}}}{\Delta t} $

Average Velocity For n Velocities:

$\frac{n}{v_{av}}= \frac{1}{v_1} +\frac{1}{v_2} +…+ \frac{1}{v_n}$

Average Speed (in an interval):

$\text{Average Speed} =\frac{ \text{Total distance travelled} }{ \text{ Total time taken }}$

Instantaneous Velocity (at an instant) :

$\vec{\mathrm{v}}_{\mathrm{inst}}=\lim _{\Delta \mathrm{t} \rightarrow 0}\left(\frac{\Delta \vec{\mathrm{x}}}{\Delta \mathrm{t}}\right)$

Average Acceleration (in an interval):

$v_{av} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v_f} - \vec{v_i}}{\Delta t}$

Instantaneous Acceleration (at an instant):

$\vec{a}=\frac{d \vec{v}}{d t}=\lim _{\Delta t \rightarrow 0}\left(\frac{\vec{\Delta v}}{\Delta t}\right)$

Graphs in Uniformly Accelerated Motion along a straight line $(a \neq 0)$:
  • $x$ is a quadratic polynomial in terms of $t$. Hence $x-t$ graph is a parabola.
x-t graph

alt text

v-t graph
  • $v$ is a linear polynomial in terms of $t$. Hence $v-t$ graph is a straight line of slope a.

alt text

a-t graph
  • a-t graph is a horizontal line because a is constant.

alt text

Maxima & Minima
  • At maximum: $\frac{dy}{dx} = 0,\quad \frac{d}{dx}\left(\frac{dy}{dx}\right)<0 $

  • At minima: $\frac{dy}{dx} = 0,\quad \frac{d}{dx}\left(\frac{dy}{dx}\right)>0 $

Equations of Motion (for constant acceleration):

, (a) $ v=u+a t$

(b) $s=u t+\frac{1}{2}$ at $^{2} \quad s=v t-\frac{1}{2}$ at ${ }^{2} \quad x_{f}=x_{i}+u t+\frac{1}{2} a t^{2}$

(c) $ v^{2}=u^{2}+2 a s$

(d) $\mathrm{s}=\frac{(\mathrm{u}+\mathrm{v})}{2} \mathrm{t}$

(e) $s_{n}=u+\frac{a}{2}(2 n-1)$

For freely falling bodies : $(u=0)$

(taking upward direction as positive)

(a) $\mathrm{v}=-\mathrm{gt}$

(b) $\mathrm{s}=-\frac{1}{2} \mathrm{gt}^{2} \hspace{10mm}\mathrm{s}=\mathrm{vt}+\frac{1}{2} \mathrm{gt}^{2} \hspace{10mm}h_{f}=h_{i}-\frac{1}{2} g t^{2}$

(c) $v^{2}=-2 g s$

(d) $\quad s_{n}=-\frac{g}{2}(2 n-1)$