Fluid Mechanics And Properties Of Matter
https: Hub
General Learning Resources
Fluids, Surface Tension, Viscosity & Elasticity :
Hydraulic Press:
$P=\frac{f}{a}=\frac{F}{A} \text { or } F=\frac{A}{a} \times f$
Hydrostatic Paradox: $P_{A}=P_{B}=P_{C}$
(i) Liquid placed in elevator : When elevator accelerates upward with acceleration $a_{0}$ then pressure in the fluid, at depth ’ $h$ ’ may be given by, $ P=\rho h\left[g+a_{0}\right] $
and force of buoyancy, $B=m\left(g+a_{0}\right)$
(ii) Free surface of liquid in horizontal acceleration :
$\tan \theta=\frac{a_{0}}{g}$
$P_{1}-P_{2}=\rho v a_{0}$
where $P_{1}$ and $P_{2}$ are pressures at points 1 and 2.
Then $h_1-h_2=\frac{v a_0}{g}$
(iii) Free surface of liquid in case of rotating cylinder:
$h=\frac{v^{2}}{2 g}=\frac{\omega^{2} r^{2}}{2 g}$
Equation of Continuity:
$a_{1} v_{1}=a_{2} v_{2}$
In general, av = constant.
Bernoulli’s Theorem:
$\frac{P}{\rho}+\frac{1}{2} v^{2}+g h= \text{constant}$
Torricelli’s theorem:
Speed of efflux: $v=\sqrt{\frac{2 g h}{1-\frac{A_{2}^{2}}{A_{1}{ }^{2}}}}$
$A_{2}=$ area of hole, ${A}_{1}=$ area of vessel.
Elasticity and Viscosity:
$\text{Stress}=\frac{\text { restoring force }}{\text { area of the body }}=\frac{\mathrm{F}}{\mathrm{A}}$
Strain, $\in=\frac{\text { change in configuration }}{\text { original configuration }}$
(i) Longitudinal strain $=\frac{\Delta \mathrm{L}}{\mathrm{L}}$
(ii) $\epsilon_{\mathrm{v}}=$ volume strain $=\frac{\Delta \mathrm{V}}{\mathrm{V}}$
(iii) Shear Strain : $\tan \phi$ or $\phi=\frac{\mathrm{X}}{\ell}$
Young’s Modulus Of Elasticity:
$ \mathrm{Y}=\frac{\mathrm{F} / \mathrm{A}}{\Delta \mathrm{L} / \mathrm{L}}=\frac{\mathrm{FL}}{\mathrm{A} \Delta \mathrm{L}}$
Potential Energy Per Unit Volume:
$u =\frac{1}{2}(\text{stress} \times \operatorname{strain})=\frac{1}{2}\left(\mathrm{Y} \times \operatorname{strain}^{2}\right)$
Inter-Atomic Force-Constant:
$\mathrm{k}=\mathrm{Yr}_{0}$
Newton’s Law of viscosity:
$F \propto A \frac{d v}{d x} \text { or } F=-\eta A \frac{d v}{d x}$
Stoke’s Law:
$F=6 \pi \eta r v $
Terminal velocity:
$ v_T=\frac{2}{9} \frac{r^{2}(\rho-\sigma) g}{\eta}$
Surface Tension
$T=\frac{\text { Total force on either of the imaginary line }(F)}{\text { Length of the line }(\ell)}$
$\mathrm{T}=\mathrm{S}=\frac{\Delta \mathrm{W}}{\mathrm{A}}$
Thus, surface tension is numerically equal to surface energy or work done per unit increase surface area.
-
Inside a bubble : $\left(p-p_{a}\right)=\frac{4 T}{r}=p_{\text {excess }} ;$
-
Inside the drop : $\left(p-p_{a}\right)=\frac{2 T}{r}=p_{\text {excess }}$
-
Inside air bubble in a liquid : $\left(p-p_{a}\right)=\frac{2 T}{r}=p_{\text {excess }}$
-
Capillary Rise $ h=\frac{2 T \cos \theta}{r \rho g}$
Relations Between Elastic Constants
E = Young’s modulus of elasticity, G = Modulus of rigidity, K = Bulk modulus, $\nu$ = Poisson’s ratio
-
Relationships between Young’s Modulus and Modulus of Rigidity: $E = 2G(1 + \nu)$
-
Relationships between Young’s Modulus and Bulk Modulus: $E = 3K(1 - 2\nu)$
-
Relationships between Modulus of Rigidity and Bulk Modulus: $G = \frac{3K(1 - 2\nu)}{2(1 + \nu)}$
-
Relationships between Poisson’s Ratio $\nu = \frac{3K - 2G}{2(3K + G)}$
-
Relation involving all three moduli: $E = 9KG / (3K + G)$
Bulk Modulus
$B=-P/(\Delta V / V)$
Compressibility
$k=(1 / B)=-(1 / \Delta P) \times(\Delta V / V)$