Capacitance
https: Hub
General Learning Resources
Capacitors:
(i) Capacitance Equation:
$q \propto V \Rightarrow q = CV$
-
$q$: Charge on positive plate of the capacitor
-
$C$: Capacitance of capacitor.
-
$V$: Potential difference between positive and negative plates.
(ii) Representation of capacitor:
(iii) Energy stored in the capacitor:
$U = \frac{1}{2} CV^2 = \frac{Q^2}{2C} = \frac{QV}{2}$
(iv) Energy density
$ \text{Energy density }= \frac{1}{2} \varepsilon_0 \varepsilon_r E^2 = \frac{1}{2} \varepsilon_0 KE^2$
-
$\varepsilon_r$: Relative permittivity of the medium.
-
$K = \varepsilon_r$: Dielectric Constant
-
For vacuum, energy density $= \frac{1}{2} \varepsilon_0 E^2$
(v) Types of Capacitors:
(a) Parallel plate capacitor
$C = \frac{\varepsilon_0 \varepsilon_r A}{d} = K\frac{\varepsilon_0 A}{d}$
-
$A$: Area of plates
-
$d$: distance between the plates ($\ll$ size of plate)
(b) Spherical Capacitor:
- Capacitance of an isolated spherical Conductor (hollow or solid)
$C = 4 \pi \varepsilon_0 \varepsilon_r R$
$R$: Radius of the spherical conductor
- Capacitance of spherical capacitor
$C = 4 \pi \varepsilon_0 \frac{ab}{(b-a)} = \frac{4 \pi \varepsilon_0 K ab}{(b-a)}$
(c) Cylindrical Capacitor:
$\ell \gg {a, b}$
Capacitance per unit length: $\frac{C}{l}= \frac{2 \pi \varepsilon_0}{\ell \ln(b / a)} \text{F/m}$
(vi) Capacitance of capacitor depends on:
(a) Area of plates
(b) Distance between the plates
(c) Dielectric medium between the plates.
(vii) Electric field intensity between the plates of capacitor:
$E = \frac{\sigma}{\varepsilon_0} = \frac{V}{d}$
$\sigma$: Surface charge density
(viii) Force experienced by any plate of capacitor:
$F = \frac{q^2}{2A\varepsilon_0}$
Distribution of Charges on Connecting Two Charged Capacitors:
When two capacitors $C_1$ and $C_2$ are connected as shown in the figure:
(a) Common potential:
$V = \frac{C_1 V_1 + C_2 V_2}{C_1 + C_2} = \frac{\text{Total charge}}{\text{Total capacitance}}$
(b) Capacitance Equation:
$Q_1’ = C_1 V = \frac{C_1}{C_1 + C_2}(Q_1 + Q_2)$
$Q_2’ = C_2 V = \frac{C_2}{C_1 + C_2}(Q_1 + Q_2)$
(c) Heat loss during redistribution:
$\Delta H = U_i - U_f = \frac{1}{2} \frac{C_1 C_2}{C_1 + C_2}(V_1 - V_2)^2$
The loss of energy is in the form of Joule heating in the wire.
Combination of Capacitor
(i) Series Combination:
$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$
$V_1 : V_2 : V_3 = \frac{1}{C_1} : \frac{1}{C_2} : \frac{1}{C_3}$
(ii) Parallel Combination:
$C_{eq} = C_1 + C_2 + C_3$
$Q_1 : Q_2 : Q_3 = C_1 : C_2 : C_3$
Charging and Discharging of a Capacitor:
(i) Charging of Capacitor (Capacitor initially uncharged):
$q = q_0(1 - e^{-t / \tau})$
-
$q_0$: Charge on the capacitor at steady state
-
$q_0 = CV$
-
$\tau$: Time constant $= CR_{eq}$
-
Current: $I = \frac{q_0}{\tau} e^{-t / \tau} = \frac{V}{R} e^{-t / \tau}$
(ii) Discharging of Capacitor:
$q = q_0 e^{-t / \tau}$
-
$q_0$: Initial charge on the capacitor
-
Current: $I = \frac{q_0}{\tau} e^{-t / \tau}$
(i) Capacitance in the presence of dielectric:
-
Capacitance in the presence of dielectric: $C = \frac{K \varepsilon_0 A}{d} = KC_0$
-
$C_0$: Capacitance in the absence of dielectric.
(ii) Inside A Dielectric Material:
$E_{in} = E - E_{ind} = \frac{\sigma}{\varepsilon_0} - \frac{\sigma_b}{\varepsilon_0} = \frac{\sigma}{K\varepsilon_0} \frac{V}{d}$
$E: \frac{\sigma}{\varepsilon_0}$: Electric field in the absence of dielectric
$E_{ind}$: Induced (bound) charge density.
(iii) Relationship Between Bound Charge Density And Free Charge Density
$\sigma_b = \sigma\left(1 - \frac{1}{K}\right).$
Force on Dielectric:
(i) When the battery is connected:
$F = \frac{\varepsilon_0 b(K - 1)V^2}{2d}$
(ii) When the battery is not connected:
$F = \frac{Q^2}{2 C^2} \frac{dC}{dx}$
(iii) The force on the dielectric will be zero when the dielectric is fully inside.